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Rod Packings and Crystal Chemistry 

By M. O'KEEFFE* AND STEN ANDERSSON 

Kemicentrum, Lunds Universitet, Box 740, S-220 07 Lund 7, Sweden 

(Received 26 February 1977; accepted 9 April 1977) 

Some crystallographic packings of identical infinite cylinders are described. It is shown how certain 
crystal structures are related to these packings when the cylinders are replaced by rods of atoms or groups 
of atoms (coordination polyhedra). Emphasis is placed on the densest cubic rod packing and structures 
based on this principle, which include garnet, ThaP4, fl-Mn, Ag4RbI5 and bixbyite. 

Introduction 
One of the oldest, and most fruitful, ideas in crystal 
chemistry is to consider crystal structures as derived 
from sphere packings. Many simple crystal structures 
can be described as having one or more sets of ions 
arranged as in hexagonal or cubic closest sphere 
packing. More complex structures do not lend them- 
selves to description in this way so alternative de- 
scriptions, e.g. in terms of connected coordination 
polyhedra, are invoked. 

In our search for unifying principles that simplify 
the description of crystal structures and the relation- 
ships between them (Hyde, Bagshaw, Andersson & 
O'Keeffe, 1974) we have found that many crystal struc- 
tures, including some common ones that have resisted 
simple description before, are naturally and simply 
described in terms of what we call rod packings. In 
its simplest form a rod packing is a crystallographic 
(in the sense of having the symmetry properties of one 
of the crystallographic space groups) packing of uni- 
form cylinders. In this paper we describe some of the 
simpler of these packings and illustrate their utility 
in describing crystal structure by application to some 
common structure types. References are given only 
for crystal structures not to be found in the compila- 
tions of Wyckoff (1963-1968) and Schubert (1964). In 
the application to real crystals the uniform cylinder 
is of course replaced by a generalized rod, i.e. any 
figure with a singular axis but without singular points 
or planes (Shubnikov & Koptsik, 1974); thus it may 
be a linear or zigzag chain of atoms or a rod of con- 
nected polyhedra (with or without other atoms at 
their centres). 

Rod packings 

We describe below some crystallographic packings of 
uniform cylinders. We restrict ourselves to those 
packings in which every cylinder is related to every 
other one by one or more of the operations of a 
crystallographic space group. In addition to the sym- 
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merry we record the density, defined as the fraction 
of space occupied by the cylinders. The position and 
orientation of the cylinders are defined by the equa- 
tions of the cylinder axis conveniently given in par- 
ametric form. For example, an axis parallel to [001] 
and passing through the point 0,0,0 may be expressed 
by the equations x=0 ,  y=0 ,  z = u  or more simply 
written 0, 0, u. The positions of a set of rods in a packing 
will be expressed by a set of parametric equations of 

J 

Fig. 1. Hexagonal (honeycomb) packing of parallel cylinders. 

I J 

J 

Fig. 2. Tetragonal packing of parallel cylinders. 
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this sort involving one parameter and thus may con- 
veniently be considered as derived from one of the 
univariant sets of equivalent positions (lattice com- 
plexes) of the space groups. These also are given in 
the notation of International Tables.lbr X-ray Crystal- 
lography (1965). Not all univariant lattice complexes 
correspond in this way to a set of cylinder axes; in 
most instances they correspond instead to a set of 
intersecting lines whereas cylinder axes must of course 
be non-intersecting. 

Packings of cylindrical rods with parallel axes is 
formally the same problem as that of circle coverings 
in a plane and as such has been discussed (Niggli, 
1926, 1928). We describe just the two simplest packings 
here. 

(i) Fig. 1. The densest packing of cylindrical rods 
is the familiar honeycomb packing. Not surprisingly 
it is of frequent occurrence in crystal structures, a few 
examples of which are given later. The symmetry is 
P6/'mmm with one rod, equations 0,0,u corresponding 
to positions 2(e), in the unit cell. The density is 0.9069. 

(ii) Fig. 2. This corresponds to a simple square 
packing of rods and again occurs in many crystal 

Fig. 3. Tetragonal layer packing of cylinders. 

Fig. 5. Body-centred tetragonal layer packing of cylinders. 

structures. The symmetry is P4/mmm with one rod, 
equations 0, 0, u corresponding to positions 2(g), in the 
unit cell. The packing density is 0.7854. 

An example of this packing is the structure of 
CUCIE.2H20, which contains strings of Cu atoms 
along [001] with approximately square ( H 2 0 ) 2 C I  2 
groups normal to the strings (compare the Pt oxides 
discussed below). 

In the next set of rod packings, not all rod axes 
are parallel but they lie in parallel planes. The densities 
of all these packings of uniform cylinders will be the 
same (0-7854) as for the packing of Fig. 2. 

(iii) Fig. 3. The simplest two-layer packing. The sym- 
metry is P42/mmc. There are two rods in the unit cell 
with equations 0,u,0 and u,0,½ corresponding to posi- 
tions 4(/). It is not common in crystal structures but 
an example is PtO (Fig. 4). The structures of many 
Pt compounds are characterized by strings of Pt atoms 
with a square arrangement of ligands normal to the 
rod axis and many compounds (including one-dimen- 
sional metallic conductors) are known with the rod 
axes parallel (Krogman, 1969). In PtO two such sets 
of rods at right angles may be seen. CaPt204 (Cahen, 
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Fig. 4. (a) The slructure of PtO projected on (001); (b) the structure of CaPt20 4 projected on (001): Ca aloms are the smaller open circles; 
(c) the structure of NaxPt30 4 projected on (001): smaller open circles are Na positions. In (a), (b) and (c) the larger open circles are O at 
~, ;~ and thc filled circles are Pt. 
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Ibers & Mueller, 1974) provides another example, also 
with the same symmetry. As shown in Fig. 4, the P t -O  
framework of the structure is derived from that of PtO 
by removing one half of the Pt rods of the latter. 

(iv) Fig. 5. This is a four-layer tetragonal packing 
more common than the previous one. The symmetry 
is I41/amd. There are four rods in the unit cell with 
equations0,u,0;  3 1. 1 1. and x 3 These may be U,~,~, -~, U, ~, U,g,~. 
considered as derived from positions 16(h) (O,u,z etc.) 
with z=0 .  An example is 'alchemist's gold', 
Hg2.186AsF6 (Brown et al., 1974), which comprises rods 
of Hg atoms with this packing. Another example is 
the structure proposed for laminar (0~2) sulphur 
(Tuinstra, 1967); here the rods are helices of S atoms. 
A third example is Pu3Zn22, although the rods are 
considerably separated in the ab plane (Johnson, 
Wood & Smith, 1968). 

It is sometimes convenient to consider the array of 
octahedral cations and anions in the spinel structure, 
with stoichiometry MX2 such as in CTi2 (Goretzki, 
1967) and (distorted) in hydroxychlorides of the 
atacamite, Cu2(OH)3C1, group, as rods of edge- 
sharing octahedra with this packing. The symmetry 
of spinel is cubic, but in a derived structure, that of 
hausmannite (Mn304) and related compounds such 
as CdMn204  (Fig. 6), there is a tetragonal distortion 
(symmetry again 141/amd) so that the rods are chains 
of edge-shared squares with this rod packing. 

The octahedral framework of the pyrochlore struc- 
ture (again cubic) can be considered in the same way, 
but now the rods consist of corner-connected octa- 
hedra so that the stoichiometry of the framework is 
MX3. The symmetry of the pyrochlore framework is 
the same as that of spinel, but ordered occupancy of 
the cavities in the framework can result in tetragonal 
symmetry. An example with 141/amd symmetry is 
SrPb2Ih .7H20 (Ferrari, Braibanti & Lanfredi, 1961) 
in which Sr(H20)6 ions and H 2 0  occupy cavities in 
the PbI3 framework. 

(v) Fig. 7. We include this as the simplest layer 
packing of rods with hexagonal symmetry. The space 
group is P6222 with three rods in the unit cell. The 
rod equations are u,0,0; u,u,½; 0,u,~ derived from 
positions 6(g). Examples are high quartz (Fig. 8) in 
which the rods are zigzag lines of O atoms, and 
NaHg2021 (Aurivillius, 1960) in which the rods are 
zigzag lines o f - O - H g - O - H g -  (with Hg atoms on the 
rod axes). 

We turn now to cylinder packings in which the axes 
are not coplanar. These have cubic symmetry, are less 
obvious intuitively, but for that reason of greater 
utility in the description of crystal structures. 

(vi) Fig. 9. This is the simplest cubic cylinder packing. 
The symmetry is Pm3n so we call it primitive cubic 
rod packing. The rod equations are u,0,½; ½,u,0; 0,½,u 
derived from positions 12(g). The packing density is 
only 0.5890. An example is the fl-W (A15) structure 
which has stoichiometry A3B and the same symmetry. 
The A atoms lie in strings along axes with this packing 
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Fig. 6. The structure of CdMn20,  projected on (001). Open circles 
O (heights in c/100). Small filled circles Cd, large filled circles 
Mn. 

Fig. 7. A three-layer hexagonal cylinder packing. 

Fig. 8. The oxygen arrangement in high quartz. The zigzag lines lie 
in planes parallel to (001) and separated by c/3. 
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(Fig. 10a). The occurrence of these strings suggests a 
simple relationship of this structure to a hypothetical 
structure derived from ordering atoms on a primitive 
cubic lattice (Fig. 10b). The two structures can be re- 
lated by translations of the strings of atoms parallel 
to their axes. The cubic Pt bronzes AxPt304 (A = Na, 
Ni etc.) have a related structure (Cahen, Ibers & 
Shannon, 1972) in which the Pt atoms lie on rods with 
primitive cubic rod packing. The structure of NaPt304 
may be derived from that of CaPt204 by insertion of 
a third rod of Pt atoms while changing Ca to Na 
(Fig. 4). The structure of Ag3PO4 is very similar, with 
Ag rods in this case, but the symmetry is now lowered 
to P43n due to displacement of the O atoms to provide 
tetrahedral coordination for P. 

(vii) Fig. 11. This is a second example of primitive 
cubic packing of identical cylinders. The packing has 
the same symmetry and density as the previous one. 
The rod equations are ~,~,u; 1 5 . 7 3 . 7 5 / ~ / , ~ , ~ .  g ,g ,U ,  g ,g ,U ,  g ,g ,U;  

7 5. i 5. 7 3. 5 lderivedfromposi_ 
tions 48(l) (x,y,u etc) of Pm3n by setting x=~,  y=~. 

(viii). The final packing we wish to discuss is a cubic 
packing of cylinders with axes parallel to (111). It 
is hard to represent in a drawing so a sketch of the 
packing (Fig. 12) is supplemented by a photograph of 

a model (Fig. 13). It is a denser packing (density= 
0.6802) than the primitive cubic rod packing and it is 
our conjecture that it is the densest cubic packing of 
equivalent cylinders. The symmetry is la3d so we call 
it body-centred cubic (b.c.c.) rod packing. The rod equa- 

.1 1 ; ½-u,½+u;½+u,u,½-uare  tions u, u, u, 7 -  u,7 + u, u u, 
derived from positions 32(e). A unit cell of this packing 
of cylinders of unit diameter has a cell edge a = 2]/(2 
and contains a total length of cylinder equal to 8])/6. 

A striking feature of the symmetry of this packing 
is that it is the highest-symmetry cubic space group 
with four non-intersecting threefold axes. This is 
clearly a requirement for rod packing to be present in 
crystal structures, so that it will only be found in the 
cubic subgroups of la3d; accordingly the hierarchy of 
these subgroups (Neubiiser & Wondratschek, 1969) 
is displayed in Fig. 14. Not all crystals with the sym- 
metry of one of these groups will be most appropriately 
described as rod packings however. In particular there 
is a group of crystals composed of linear molecules 
without a dipole moment (N2, CO2 etc.) in which the 
centres of the molecules are at the nodes of a face- 
centred cubic lattice. The lowest quadrupole energy 
of such an arrangement has been shown (Nagai & 
Nakamura, 1960) to be that in which the axes of the 

Fig. 11. A second primitive cubic packing of identical cylinders 
Fig. 9. Primitive cubic cylinder packing. (compare Fig. 9). 

F------ I t 

Fig. 10. (a) the A 15 structure as a rod packing. Displacement of 
rods in the direction of the arrows produces the structure shown 
in (b). 

( 

( 

Fig. 12. An element of body-centred cubic rod packing viewed down 
a trigonal axis. 
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molecules are aligned along all four (111) with sym- 
metry Pa3. The structure of FeS2 (pyrite) falls in this 
category, as does that of ZrP2OT. In the latter the 
molecule is the P2  O 4 -  ion. Crystals of linear mol- 
ecules with a small dipole moment (e.g. CO) have a 
related structure with lower symmetry (P2t3). With 
this reservation in mind we have found that most of 
the cubic crystals with the symmetry of one of the 
groups of Fig. 14 may be described as body-centred 
cubic rod packings and in subsequent sections we pro- 
vide some examples. 

Body-centred cubic sphere packing as rod packings 
and the ThaP4 family of structures 

It is revealing to describe the b.c.c, sphere packing as 
a rod packing. The nearest neighbours of a given atom 
are along the (111) directions and all the atoms of 
the structure lie on rods along these directions. There 
are two ways of dividing the structure into rods. The 
first is to consider all atoms as lying on the axes of 
rods parallel to [111], Fig. 15(a). The utility of this 
description may be illustrated by considering the well- 
known transition of b.c.c, to the tn-alloy structure. The 
atomic displacements are simply described as transla- 
tions of the rods along their axes (Fig. 16) (Andersson, 
1960). 

The second description of b.c.c, sphere packing in 
terms of rods concerns us more here. In this case the 
atoms are on the axes of rods parallel to four dif- 
ferent (111) directions, the rods being packed as in 
b.c.c, rod packing (Fig. 15b). Fig. 17 shows how a new 
atomic arrangement is derived from b.c.c, by system- 
atic displacements of rods along their axes. If the 
atomic displacement is a fraction x of the body diag- 
onal of the 16 atom cell of Fig. 17, the new atom posi- 
tions will be 16(c) of I743d. This is approximately the 
structure of UCo (x--0.04, but note that in UCo 
ordering of the two kinds of atom lowers the sym- 
metry to/213). 

In the original b.c.c, structure, space is divided into 
congruent but irregular tetrahedra, of which there 
are six per atom. In the rod distortion we are now 
discussing one finds that, as x is initially increased 
from 0 to ~ ,  one eighth of these tetrahedra (with centres 
at positions 12(b) of I7~3d: v 1 g,0,~ etc.) are converted to 
regular tetrahedra. The remaining space consists of 
12 bisdisphenoids [with centres at 12(a): ~,0,¼ etc.], 
each of which is derived from seven tetrahedra of the 
original b.c.c. (Fig. 17). For x =3~ the bisdisphenoids 
are nearly dodecadeltahedra (all faces equilateral tri- 
angles) but in fact there are two edge lengths [with 
ratio ]/(25/24)]. If x is further increased to ~ one ob- 
tains a bisdisphenoid in which the distances from the 
centre to the eight vertices are all equal. A number 
of cubic crystal structures can now be derived by filling 
one or both of these sets of interstices (tetrahedra and 
bisdisphenoids) with atoms or groups of atoms. We 
give some examples below. 

If an atom, say A, is placed at the centre of the 
bisdisphenoids of B atoms the stoichiometry is AaB 4 
and one has. the well-known ThaP4 structure type 
(for which usually x ~--t~ so that all the shorter A - B  
distances are equal). The structure of HgaSECI2 (and 
isostructural compounds) is derived from that of 
Th3P4 by replacing P4 by $2C12 (arranged as in UCo 
so that the symmetry is again 1213) and replacing Th 
by Hg off-centre in the bisdisphenoids. The B atoms 
in the ideal structure ( x = ~ )  have six equidistant A 
neighbours in an arrangement intermediate between 
an octahedron (triangular antiprism, triangles rotated 
by 60 ° with respect to each other) and a right tri- 
angular prism (rotation angle of zero): what might 

la3d 

Ia3 IZ-,3d 14132 

Pa3 I213 P/.~.332 

P213 
Fig. 14. The cubic subgroups of la3d. Arrows connect each space 

group to its cubic maximal subgroups. 

(a) (h) 

Fig. 15. (a) B.c.c. sphere packing as a hexagonal rod packing, (b) 
b.c.c, sphere packing as a b.c.c, rod packing. 

II i I; 
I !I I 

(a) (h) 

Fig. 16. (a)Top: a ( i /0) section of b.c.c, sphere packing showing the 
atoms on parallel rods; bot tom: a projection along the rod axes 
[l 11]. Displacement of the rods in the directions shown produces 
the configuration shown in (b). 
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Fig. 13. Photograph of a model of body-centred cubic rod pack- 
ing. The model comprises four interpenetrating sets of ninet- 
een rods each. 

Fig. 18. The rods of Th6 metaprisms in the Th3P4 structure. 
Rods of different colours are parallel to different (111). The 
green rods are viewed down their axes. 

Fig. 21. The rods of tetrahedra and metaprisms comprising the 
fl-Mn structure. The colouring scheme is as in Fig. 18. 

Fig. 23. A polyhedral model of the garnet structure. Red oc- 
tahedra and transparent trigonal prisms form rods packed 
in b.c.c, rod packing. The rods are joined by green SiO4 
tetrahedra. Some of the large cation sites are shown by grey 
balls. The small yellow balls represent oxygen atoms. 

Fig. 26. A polyhedral model of the structure of benitoite, 
BaTiSi3Og, showing the parallel rods of empty trigonal 
prisms (clear) and TiO6 octahedra (red). Si ions are in the 
green tetrahedra. 

Fig. 27. A polyhedral model of the structure of catapleite, 
Na2ZrSi309.2H20, showing the parallel rods of ZrO6 octa- 
hedra (yellow) and empty trigonal prisms (transparent) 
joined by SiO4 tetrahedra (green). 

[To face p. 918 
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be conveniently termed a metaprism [rotation angle 
cos-~ (11/14)= 38.2°]. The structure is now described 
in terms of a rod packing: rods of BA6 metaprisms 

O, 50 O. 50 

25.75 25.75 

T O, 50 0 0,50 [ A I 

L/ ",J 
0 25,75 2 5,75 ~r lid 

o l 
i 

Fig. 17. Top: eight unit cells (2 x 2 x 2) of b.c.c. Bottom: the atoms 
of the top figure have been displaced in the directions shown by 
the arrows along rows by an amount 0"05 × body diagonal. 

Fig. 19. The SiO4 groups of eulytine, Bi3Si4012 shown in projec- 
tion on (001). One bisdisphenoid of Bi ions (large open circles) 
is shown and in the top left corner the 3 + 3 coordination of Bi 
by oxygen is shown. 

sharing faces are packed as in b.c.c, rod packing 
(Fig. 18). In this packing each BA6 polyhedron shares 
five faces with congruent adjacent polyhedra 
(Kharitonov, Smirnova & Belov, 1966). 

One may see now a simple relationship between the 
Th3P 4 structure type and some other phosphide and 
sulphide structures which contain rods of face-sharing 
trigonal prisms and/or octahedra. For example in 
Fe2P, PFe6 trigonal prisms form rods by sharing tri- 
angular faces; there are two kinds of rod, isolated 
and edge-sharing. In MoP (with the WC structure 
type) rods of PMo6 prisms share all vertical edges. 
TiP has rods of alternating PTi6 octahedra and prisms, 
again joined by edge-sharing. Only a small rotation 
of the triangular faces normal to the trigonal axis of 
the TiP rod is required to transform it into a rod of 
metaprisms such as of PTh6 found in Th3P4. These 
rods can now share faces increasing the P/metal ratio 
to greater than one. 

There are other ways of filling the bisdisphenoid sites 
to produce structures with 1-43d symmetry. Thus one 
may put A2 groups into each bisdisphenoid with the 
A atoms on the 24(d) sites. The stoichiometry is 
(A2)3B4 and one has the well-known structure of 
Pu2C3 ,  Rb20 3 etc. 

The next level of complexity is to put suitably 
oriented tetrahedral A4 groups into the bisdisphenoids 
(compare Fig. 19). This can be done with A atoms 
occupying positions 48(e) (with e.g. x-~ 0"06, y ~ 0" 13, 
z~-0-29). The stoichiometry is (A4)3B4; an example is 
the mineral domeykite, Cu3As. 

Closely related to the last structure is one obtained 
by putting A4 groups in the bisdisphenoids and A' 
groups in the tetrahedra. The stoichiometry is now 
A'3(A4)3B 4 and known compounds with this structure 
include Cu15Si4, NalsPb4 and H15Th4. 

Finally, a structure is known with CA4 tetrahedral 
groups in the bisdisphenoids. This is the structure of 
compounds isostructural with eulytine Bi4(SiO4)3. A 
(100) projection is shown in Fig. 19, in which the con- 
figuration of the SiO4 is shown and a bisdisphenoid 
of Bi atoms around one tetrahedron is sketched in. 

In the eulytine structure Bi has only three nearest 
neighbours in a configuration typical for lone-pair 
cations and this structure is only found with B= Bi 3 ÷ 
or Pb 2 +. However, there is a related structure derived 
from that of eulytine by rotation of the tetrahedra 
about their centres in such a way that the coordina- 
tion of half of the B ions approximates the shape of 
a regular octahedron while the other half have a less 
regular coordination of more distant anions. This is 
the structure of langbeinite, KzMg2(SO4)3, and iso- 
structural compounds, for which the configuration of 
tetrahedral groups is shown in Fig. 20 for comparison 
with those of eulytine in Fig. 19. The S atoms of 
langbeinite have almost exactly the same positions in 
the unit cell as the Si atoms of eulytine; the symmetry 
is however now reduced to P213. 

The langbeinite structure (as indeed all the struc- 
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Fig. 24. The structure of YaFesO12 projected on (111). The empty trigonal prisms are outlined. Prisms of different colours lie 
on rods parallel to different (111). 
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Fig. 25. The network of octahedra and tetrahedra of the structure of YaFesO12 drawn in the same projection as in Fig. 24. 
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Fig. 20. The SO4 groups of langbeinite, K2Mg2S4012 shown in 
(001) projection for comparison with Fig. 19. In the top right the 
octahedral coordination of one Mg ion (larger open circle) is 
shown. 

tures described in this section) is conveniently de- 
scribed as a body-centred cubic rod packing. In this 
instance the rods consist of a repeating sequence 
K , K ,  O 3 M g O 3 , O 3 M g O 3  (the O 3 M g O  3 group ap- 
proximating a regular octahedron). When packed as 
in b.c.c, rod packing all the K, Mg and O atoms of 
the structure are accounted for; the S atoms in tetra- 
hedral coordination hold the rods together (compare 
garnet, discussed below). 

Table 1 summarizes the structural relationships be- 
tween the compounds of this section. 

Table 1. Structures with I743d symmetry derived 
from b.c.c, sphere packing 

Structure 16(c) 
b.c.c, x =0  
UCo* U, Co 
Th3P4 P 
Pu2C3 Pu 
Cu3As As 
Cu 15 Si4 Si 
Bi4Si3OIz Bi 

Tetrahedral 
site Bisdisphenoid site 
12(b) 12(a) 24(d) 48(e) 

Cu 

* I213. 

Th 

Ca 
Cu 
O 

One of the strongest motivations for recognizing 
and describing structural relationships is to identify 
possibilities for intergrowth of structures, and for 
structural defects and non-stoichiometry (Hyde et al., 
1974). In this connection the rod distortions of b.c.c. 
discussed here are suggestive. The b.c.c, structure is 
characterized by having a large number (six) of tetra- 
hedral interstitial sites per atom, yet thermodynamic 
data, for example for hydrogen dissolved in b.c.c. 
metals (O'Keeffe & Steward, 1972), suggests the avail- 

ability of a smaller number ( ~ 1) of interstitial sites per 
atom. The rod distortions of b.c.c, described here sug- 
gest ways in which the small tetrahedral sites can be 
combined into larger sites (e.g. seven tetrahedra into 
a bisdisphenoid) and one is led naturally to consider 
the possibility of local rod distortions in the neigh- 
bourhood of an interstitial atom. The possibility of 
interstitial atoms stabilizing regions of o9 structure has 
been raised before (Andersson, 1960); equally possible 
is the occurrence of regions of the Th3P 4 type of struc- 
ture in a b.c.c, matrix (the existence of the compound 
Th4H 15 already mentioned enforces this point of view). 
Conversely the well-known problem of non-stoichiom- 
etry in chalcogenides with the Th3P4 structure (for 
example the range of composition of the rare-earth 
sulphides from Ln2S3 to Ln3S4, Flahaut et al., 1965) 
suggests the possibility that the cation-deficient com- 
pounds contain regions in which the anion packing 
~s more closely that of the undistorted b.c.c, parent 
structure. 

Once the possibility of making larger interstices in 
the b.c.c, structure by local displacements of rows of 
atoms is recognised, one is led immediately to the 
recognition of possible diffusion mechanisms for inter- 
stitial atoms in a b.c.c, framework involving coopera- 
tive motion of b.c.c, atoms along rod fragments 
coupled with interstitial jumps. Such considerations 
are relevant to the anomalously high diffusivity of H 
in b.c.c, metals and of Ag ÷ in solid electrolytes such 
as AgI and Ag2S (in which the lattice of immobile 
ions is b.c.c.). 

The ~-Mn family of structures 

The structure of fl-Mn has proved difficult to describe 
but lends itself to a simple description in terms of 
body-centred cubic rod packing. The symmetry of the 
structure is P4132 (or P4332). There are two kinds of 
Mn atom (most examples of this structure occur as 
binary alloys, e.g. FezRe3): Mn(1) in 8(c) x ,x ,x  etc. 
with x_~0-06 and Mn(2) in 12(d): 1 1 ~,y,g + y etc with 
y-~0-21. With these parameters it is found that the 
Mn(2) atoms form a three-dimensional network of 
corner-connected metaprisms (very similar in shape 
to the Th 6 metaprisms of Th3P4). The Mn(1) atoms 
lie on threefold symmetry axes between two equilateral 
triangular faces of the Mn(2) metaprisms thus forming 
Mn(1)Mn(2)3 tetrahedra. 

It is easy to derive ideal values for the free param- 
eters. First it is required that the two equilateral faces 
of the metaprisms be congruent [so that as many as 
possible of the shorter Mn(2)-Mn(2) distances are 
equal]. This is the case for 

y = (9-1/33)/16 = 0-2035. 

Secondly it is required that the six shortest Mn(1)- 
Mn(2) distances are all equal. This occurs for 

x=1/ (9+] /33)=0.0678 .  



M. O 'KEEFFE AND STEN ANDERSSON 921 

With these parameters (which are very close to 
those found in real structures) the shortest Mn(1)- 
Mn(2) and Mn(2)-Mn(2) distances are nearly equal 
(their ratio is 1.055) so that the Mn(1)Mn(2)3 tetra- 
hedra are nearly regular. 

The rods of the structure consist of strings of the 
two types of polyhedron. Specifically each rod con- 
sists of a repeating sequence of Mn(2)6 metaprisms 
and four Mn(1)Mn(2)3 tetrahedra joined as shown in 
Fig. 21. If the metaprisms are replaced by octahedra 
the rods would approximate mixed hexagonal and 
cubic close packing. The rods share Mn(2) atoms so 
that the Mn(2)6 metaprisms share corners. The Mn(2) 
network alone is shown in Fig. 22. 

A related structure is that of Mo3AI2C and iso- 
structural nitrides and carbides (Jeitschko, Novotny & 
Benesovsky, 1964). C atoms [-in positions 4(a)] centre 
the metaprisms of Mo. Also related is the structure 
of RbAg415 (Geller, 1967a). In this compound the 
I(2)3I(1)2Rb packing is as in Mo3AlzC and the Ag 
ions are disordered over several sets of interstitial 
sites. 

No MX3 compound [with just the 4(a) and 12(d) 
sites of P4132 filled] appears to be known, but mention 
might be made of SrSi2 (Pringle, 1972) with Sr in 4(a) 
and Si in 8(c). The rods are now strings of Si atoms 
along the threefold axes arranged such that each Si 
atom has three nearest neighbours belonging to three 
adjacent rods. 

The garnet and related structures 

The garnets, typified by grossularite (CaaAI2Si3012), 
include many compounds of interest in mineralogy 
and solid state physics and, especially since the dis- 
covery of the ferrimagnetic garnets (Bertaut & Forrat, 
1956), many new compounds have been made that 
have the same structure so that today many hundreds 
of garnets are known (Geller, 1967b). Nevertheless 
this structure, which has been known for over fifty 
years (Menzer, 1926, 1928), has resisted all attempts 
at a simple analytical description. 

When a polyhedral model (Fig. 26) was built it was 

Fig. 22. The network of corner-connected Mn(2)6 metaprisms in 
fl-Mn projected on ( I 11 ). 

quickly realised that the structure is best described 
in terms of the b.c.c, rod packing. The rods consist 
of alternating octahedra and trigonal prisms along the 
non-intersecting trigonal axes of Ia3d. The trigonal 
prisms are empty while the octahedra contain cations 
(e.g. A1) in the special positions 16(a) of the space 
group. The O atoms at the corners of the octahedra 
and prisms of the rod are all in the set 96(h). When 
such rods are arranged along the trigonal axes all the 
anions are accounted for and tetrahedral interstices 
are created. Cations (e.g. Si) in positions 24(d) centre 
the tetrahedra and similarly the larger cations (e.g. Ca) 
in 24(c) are interstitially situated in twisted cubes be- 
tween the polyhedral rods. 

Fig. 23 is a photograph of a polyhedral model. The 
red octahedra are joined to transparent trigonal 
prisms forming the rods. Green tetrahedra containing 
the smaller cations share corners with four octahedra, 
one from each of four rods aligned in different direc- 
tions. The larger grey balls represent the larger cations 
in irregular polyhedra in the shape of twisted cubes 
with two square faces from the empty trigonal prisms. 
Only a few of these larger cations have been built 
into the structure model. O atoms are represented by 
smaller yellow balls. 

Fig. 24 shows a projection of the structure along 
the space diagonal with the coordinates for 
Y3Fe/Fe3012 (Batt & Post, 1962). Only the empty 
trigonal prisms are shown and those of each of the 
four different rods are shown in a different colour. 
The black polyhedra in the centre represent trigonal 
prisms belonging to one rod, the somewhat twisted 
appearance being due to an alternating clockwise and 
anticlockwise rotation of octahedra along the rod, a 
characteristic distortion occurring in the garnet struc- 
ture and discussed further below. Heights of most of 
the atoms are given in the upper right-hand part of 
the drawing in A. Missing heights may be found in 
Fig. 25 which is the same projection, but now the 
octahedra and tetrahedra are shown, emphasising the 
network of corner-connected polyhedra. 

As with the structures of Th3P4 and fl-Mn, param- 
eters for an ideal structure and the unit-cell edge may 
be calculated. This is done by requiring the octahedra 
and trigonal prisms of the rods to be regular. One then 
finds for the unit-cell edge: 

a=(4/[/3 +4[ /Z/3)d , 

where d is the polyhedron edge length (the anion- 
anion distance). Thus with d=2.8  (appropriate for 
oxides) a = 11-7 ,~. 

The O parameters for the ideal structure are 

x = (2[/_'3- 3]/'2 + ] / 6 -  2)/8 = -0-0411 
y = ( [ / 6 -  2)/8=0-0562 
z = (3] / '2-  2[/3 + [,/'6 - 2)/8 =0.1535.  

The cation positions are of course fixed by the sym- 
metry. 
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The experimentally observed garnet parameters are 
in general remarkably close to these ideal values, 
encouraging us to believe that we have identified the 
correct building unit (the rods) to describe the struc- 
ture, a belief that is reinforced by the observation that 
the same rods may be identified in many other mineral 
structures (see below). 

In order to analyse more closely the deviations of 
real structures from the ideal, it is convenient to work 
with a hexagonal cell appropriate to the [-111] pro- 
jection. The ideal parameters for the transformed co- 
ordinates are: 

Xo = Yo = - ( 3 V 2 -  2]/3)/8 = -0.0973 
Zo = ( 1 / 6 -  2)/8 =0.0562.  

We recognise three different kinds of distortion 
which may occur, depending on the nature of the ca- 
tions that are in the structure, and which provide an 
explanation for the remarkably flexible nature of the 
structure; Ia3d symmetry is retained for a wide variety 
of combinations of cations of different sizes (Novak & 
Gibbs, 1971). The distortions are" 
(a) Compression or expansion of the octahedra along 

the trigonal axis. In the hexagonal coordinate 
system this is measured by the z parameter: 

'Uo expansion = 100(z-Zo)/Zo. 

(b) Umbrella distortion in which O atoms move in 
the plane perpendicular to the trigonal axis. 

~,, d is tor t ion= 100[(Xo- x ) + ( y o -  y)]/(Xo + Yo). 

(c) Rotation of the octahedra, alternately clockwise 
and anticlockwise, along the trigonal axis from the 
ideal position by an angle 0. For small angles 

0-~ 6 0 ° -  sin - ' [] /3x/(x  + y)].  

The significance of these distortions is as follows. The 
ideal structure obtained with rods of regular poly- 
hedra of edge d results in irregular tetrahedra with 
slightly shorter edges (0-968d and 0"938d). The tetra- 
hedron may be made regular by a 6"8~ compression 
of the octahedra (with cubic parameters x = -0-0449, 
y = 0.0524, z =0.1497). 

Rotation alone makes the tetrahedra less regular, 
while negative umbrella distortion results in larger 
tetrahedra. We give below three examples of garnet 
structures that have been refined to illustrate the extent 
of these distortions in real structures. 
(i) Grossularite (Abrahams & Geller, 1958) 

a = 11.855 ,~ 
x =  -0"0382, y=0"0457, z=0.1512 (cubic) 
expansion = 3-09/0, umbrella distortion =-3"8~o ,  
rotation = 3.&. 

(ii) Y3Fe5012 (Batt & Post, 1962) 
a = 12.376 ,~ 
x =  -0"0269, y=0"0581, z=0"1495 (cubic) 
x = - 0"0871, y = - 0-0893, z = 0-0602 (hexagonal) 
expansion = 7.1 ~,,,, umbrella distortion = - 9-4~, 
rotation = 1.2 °. 

(iii) Berzeliite (Hawthorne, 1976): 
NaCa2(Mgo.85 Mno. 15)2As3012 
a = 12.355/~ 
x = - 0"039 l, y = 0-0522, z = 0" 1568 (cubic) 
x = - 0"0857, y = - 0" 1002, z = 0"0566 (hexagonal) 
expansion -- 0"7~o, umbrella distortion -- 0-7~o, 
rotation = 2.2 °. 

It may be seen that berzeliite provides an example 
of a garnet with a structure very close to our ideal one. 

The garnet rod structure also is known in an alloy, 
RhBi4 (Zhuravlev & Zhdanov, 1955). Here the Bi poly- 
hedra of the rods are all empty, as are the tetrahedral 
sites. Rh fills the larger interstitial positions, 24(c), oc- 
cupied by the large cations in the oxide garnets. 

In our description of the garnet structure we have 
emphasised the rods of alternating octahedra (filled 
with e.g. Al) and trigonal prisms (empty) with three 
large cations (e.g. Ca) opposite each of the three square 
faces of the trigonal prisms. In the garnet structure 
each Ca is shared between two rods, so that the com- 
position of the rods is (Cal/2) 3 A106; on the other 
hand the composition of isolated rods would be 
CaaAIO6. Related structural units are of common oc- 
currence in crystals. An example with rods in hexagonal 
packing is AI(H20)6CI 3 (in which CI replaces Ca and 
H 2 0  replace O). Crystals of compounds isostructural 
with rinneite, KaNaFeC16, have the anti-structure of 
AI(H20)6CI 3, with Na centring the trigonal prisms 
and K + replacing C1- (i.e. K3FeC16 replacing 
CaaAIO6). 

In a related group of structures we again find iso- 
lated garnet rods but in a hydrated form. Thus if in 
the CaaA106 rod the eightfold coordination of each 
Ca is completed by adding four water molecules and 
the O is replaced by OH, the rod composition becomes 
[Ca3AI(OH)6.12H20] 3+. Just such rods (which might 
be expected to occur in aqueous solution) with the 
same repeat distance as those in grossularite are found 
in hexagonal packing. Examples of such structures, 
which differ only in the details of the positioning of the 
compensating anions are those of 
[CaaAI(OH)6.12HEO]E(CrO4)3 (Feitknecht & Buser, 
1949), ettringite, [CaaAI(OH)6.12H20]2(SO4) 3 .xH20  , 
x~-l .5 (Moore & Taylor, 1970) and jouravskite, 
[Ca3Mn~V(OH)6.12H20]SO4CO 3 (Granger& Protas, 
1969). 

The trigonal prism-filled octahedron rod is a com- 
mon structural unit in many other structures also, so 
that these may be seen to be related to garnet too. 
We show polyhedral models emphasising the rods in 
the structures of benitoite, BaTiSi309 (Fig. 26) and 
(in Fig. 27) catapleite, NaEZrSi309 or wadeite, 
KEZrSi30 9 (Shumyatskaya et al., 1973), the ZrSi302-  
framework in these last two structure types being 
topologically identical. Structural relations between 
these and many other compounds are readily recog- 
nized and described in terms of packings of one or 
more of a few different kinds of rod. We propose to 
discuss some of these in a subsequent publication. 
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Other b.c.c, rod packings 

We have analysed in detail the structures of three 
groups of crystals that are most simple described as 
b.c.c, rod packings. We could readily extend the dis- 
cussion to other structures such as Ca l 2A1~4033 (space 
group I7~3d, a= 11.97 A, Buessom & Eitel, 1936), 
Ca3AI20 6 (space group Pa3, a=  15"266 A, Mondal & 
Jeffery, 1975) and AIP309 (space group I7~3d, a= 
13-66). There are other crystals with symmetry Ia3d 
or one of its cubic subgroups whose structures are 
not yet fully elucidated; their resolution should be 
simplified by a decomposition of the structure into 
rods. 

Mention might also be made of crystal structures 
in which there are hollow rods. An example is pro- 
vided by the analcime-pollucite group of minerals 
(e.g. high leucite, KA1Si206, symmetry Ia3d, a--13.43 
A). In this structure the network of corner-connected 
tetrahedra has empty channels along (111) that can 
accommodate, for example, water molecules. The 
empty channels are packed as in b.c.c, rod packing 
and thus not intersecting. An analogous example with 
body-centred tetragonal rod packing is the zeolite 
Na-P1 (Na3A13SisOI6.6H20). The symmetry is 
14~/amd and the structure (Baerlocher & Meier, 1972) 
again contains non-intersecting channels. 

A last example of a cubic structure that has a simple 
description in terms of b.c.c, rod packing is bixbyite, 
Mn20 3 (space group la3, a=9"40 ,~). The structure 
is often described as derived from that of fluorite, 
CaF 2 (in which the anions are on a simple cubic 
array), by ordered omission of one quarter of the 
anions. The description is greatly simplified when it 
is noted that the omitted anions are those lying on 
strings along (111) (Hyde & Eyring, 1965) the strings 
now being packed as in b.c.c, rod packing. 
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Research Council. One of us (M. O'Keeffe) wishes to 
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Professorship at the University of Lund. 
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